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HIGHLIGHTS:

1. Robust performance and 2. We tested feasibility of using 3. Proposed approach improves
seamless usability are a low-end wearable sensor accuracy across various
crucial for intuitive HMI with combined with unsupervised measurement conditions
myoelectric control. transfer learning. without recalibration.
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2. A) Better selection of initial model (e.g.,, TSD vs ConvNet) and B) Training that model with
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