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Myoelectric control uses electromyography (EMG) 
signals as human-originated input to enable 
intuitive interfaces with machines.
•	Recent rehabilitation robotics employs myoelectric 

control to autonomously classify user intent or 
operation mode using machine learning. 

•	However, performance in such applications inherently 
suffers from the non-stationarity of EMG signals across 
measurement conditions. Current laboratory-based 
solutions rely on careful, time-consuming control of 
the recordings or periodic recalibration, impeding 
real-world deployment [1].

We propose that robust yet seamless myoelectric 
control can be achieved using a low-end, easy-to-
“don” and “doff” wearable sensor combined with 
unsupervised transfer learning.

1. Transfer learning (e.g., SCADANN) can improve accuracy across various measurement 
conditions (inter-user, -day, -location), without the need to recalibrate.

•	 Cross-over accuracy of 
original TSD trained with 
source data dictates 
SCADANN performance, 
which implies that we 
need a “good” model, 
trained with “good” 
source data to begin 
with!

•	 SCADANN improves 
accuracy by 12±5.2% 
(avg±sd), 9.6±5.0%, and 
9.3±3.5% across all user-
to-user, day-to-day, and 
location-to-location 
cases, respectively. 

•	 TSD performs better than ConvNet [5], both for the source data 
(left) and when transferred to target data with SCADANN (right).

•	 Example: 
Inter-location 
transfer learning  
in User1

•	 Cumulatively including data from more users (top) or days 
(bottom) tends to improve performance for new target data.

•	 Incremental source data from "ideal" combination of only a few 
datasets may be more efficient than repetitive recalibration.

•	 In one best-case scenario, 
accuracy improves by 
26% (from 67% to 93%), 
whereas sometimes the 
gain is modest (e.g., from 
76% to 78%)

2. A) Better selection of initial model (e.g., TSD vs ConvNet) and B) Training that model with 
incremental source data can improve performance of transfer learning (e.g., SCADANN).

HIGHLIGHTS:  
 1. Robust performance and 

seamless usability are 
crucial for intuitive HMI with 
myoelectric control. 

2. We tested feasibility of using 
a low-end wearable sensor 
combined with unsupervised 
transfer learning.

3. Proposed approach improves 
accuracy across various 
measurement conditions 
without recalibration.

4. This framework is feasible 
and promising for seamless 
myoelectric control in 
rehabilitation robotics.

The proposed approach is feasible and can be further tailored.
•	Comparable (or better) performance (i.e., improvement in accuracy) to similar  

approaches [5-7], even with no parameter optimization and a limited data set
•	More rigorous validation: Training, calibration, validation, testing 
•	Combined effects of transfer learning across contexts (e.g., user x day)

The proposed approach is promising for seamless myoelectric control of 
powered prosthetics or exoskeletons.

References
1.	Ketykó et al., 2019, IJCNN
2.	Kanoga et al., 2020, Biomed Sig Process & Control
3.	Muceli & Farina, 2012, IEEE TNSRE
4.	Khushaba, et al.,2017, IEEE TNSRE
5.	Côté-Allard et al., 2020, IEEE Access
6.	Kanoga et al., 2021, Biomed Sig Process & Control
7.	Côté-Allard et al., 2021, IEEE TNSRE

Funding support 
This project is supported by the Northwestern 
Robotics program.

Here, we tested the feasibility of one such  
application using a consumer-grade armband 
sensor for robust gesture classification across 
various measurement conditions.
•	Device: 	  

Myo armband, 	  
8 EMG channels @ 200 Hz   	

•	Dataset (from [2]): 	  
5 users x 10 days x	 
3 wearing locations 	  
   (Neutral, Inward- and 	  
    Outward rotated) 	

•	Gestures:	  
22 wrist and hand gestures	  
(8 1-DoF and 14 2-DoF) [3] 	  
	  
	

We adopted an unsupervised domain adversarial 
self-calibration algorithm for transfer learning.
1.	 Train a deep neural network using Temporal-Spatial 

Descriptors (TSD) [4] with labeled Source Data from 
any particular user, day, or location. 

2.	 Self-Calibrating Asynchronous Domain Adversarial 
Neural Network (SCADANN) [5] automatically adjusts 
the trained TSD to improve classification performance 
for unlabeled Target Data from a different user, day, 
or location.

INTRODUCTION RESULTS

APPROACH

CONCLUSIONS
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